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ABSTRACT

Subjective measures, such as the Simulator Sickness Questionnaire
(SSQ), Fast Motion Sickness Questionnaire (FMS), and discomfort
scores, are widely used to assess cybersickness, but they often inter-
rupt the user experience and are prone to bias. To overcome these
limitations, researchers have also investigated objective indicators,
though some approaches, such as using physiological data, can be
cumbersome and impractical. Based on the loss of complexity hy-
pothesis, which suggests that certain conditions, such as disease
or aging, can produce a reduction of complexity in physiological
system dynamics, we conducted an initial investigation of the re-
lationship between movement complexity and cybersickness. We
analyzed motion tracking collected from two previous cybersick-
ness studies using the d95 score, a complexity metric derived using
principal component analysis. The results revealed a systematic re-
lationship between movement complexity and cybersickness across
both experiments. Higher discomfort scores were associated with a
reduction in complexity, thereby supporting the loss of complexity
hypothesis. Furthermore, the 9-DOF complexity measure, which
includes both physical head movement and virtual camera motion,
was a more sensitive indicator than the 6-DOF measure computed
from physical movements alone. These initial findings suggest that
movement complexity may be a useful objective indicator for future
cybersickness research.

Index Terms: Cybersickness, virtual reality, motion complexity.

1 INTRODUCTION

Cybersickness is the most notable and well-studied phenomenon
among the various aspects of user comfort, an important subjec-
tive metric in virtual reality (VR) [33]. Symptomatology and sus-
ceptibility can vary greatly between individuals, which also raises
significant accessibility concerns. Unfortunately, despite decades
of research, theoretical understanding of cybersickness remains in-
complete, and various theories have been proposed to explain its
causes [62]. Thus, cybersickness remains an active research topic
in the VR community, and empirical studies often make use of both
subjective measures and objective indicators that are known to be
correlated with user discomfort.

The most common method for measuring cybersickness is
through subjective reports. Widely used questionnaires include
the Simulator Sickness Questionnaire (SSQ) [25] and Virtual Re-
ality Sickness Questionnaire [30]. Subjective ratings can also be
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collected more efficiently through a single rating on a numerical
scale–most notably the Fast Motion Sickness Scale [26] and dis-
comfort scores [16]–that are often used in field-of-view restriction
experiments. While questionnaires are often considered the “gold
standard” for evaluating subjective experiences, they can often be
unreliable and subject to individual reporting bias [61]. Addition-
ally, in the case of cybersickness, they may even prime the user by
suggesting that the experience may induce sickness [78]. Finally,
cybersickness often develops gradually over time, and subjective
measures are challenging to deploy for continuous monitoring, be-
cause they usually require interrupting the VR experience to make
an explicit report [7].

To supplement subjective reports, researchers have investigated
a variety of methods for evaluating cybersickness using objective
measures (e.g. [23, 32, 34]). Physiological signals, such as heart
rate and electroencephalogram (EEG), have been shown to be use-
ful indicators of discomfort [10, 24, 34, 66]. However, collect-
ing physiological data requires additional equipment and may also
physically encumber the user. Many physiological sensing instru-
ments are also sensitive to noise and become unreliable during
movement, which limits their usefulness in virtual reality experi-
ences that involve walking around or physically interacting with
the environment. Previous researchers have also proposed that pos-
tural data can be an objective predictor of motion sickness, offering
a simple way to measure cybersickness using only the VR tracking
system [58, 63]. For instance, studies have shown that spontaneous
postural sway can indicate individuals who are more susceptible to
cybersickness [4, 54, 59, 63].

This work is motivated by the need to explore new ways of uti-
lizing motion tracking data, which is crucial to advancing this line
of research into objective indicators of cybersickness. Lipstiz and
Goldberger proposed the loss of complexity hypothesis, which is
based on a systematic review of past research findings and suggests
that disease states or aging can degrade the complexity of physi-
ological dynamics [37, 36]. Applying this hypothesis in the con-
text of cybersickness, we analyzed the motion complexity of track-
ing data from two previously conducted VR cybersickness studies.
These motion tracking datasets were provided by the original re-
searchers and had not been previously analyzed in prior reports.
Experiment 1 was a mixed-design study involving 38 participants
who visited the lab for three sessions, each separated by at least 24
hours, yielding a total of 108 sessions and 541 trials. Experiment
2 was a between-subjects study with 90 participants, resulting in
a total of 90 sessions and 458 trials. According to a recent meta-
analysis, the number of participants in both experiments are among
the largest samples sizes from contemporary VR locomotion exper-
iments [81].

To evaluate motion complexity, we used the d95 complexity
score proposed by Kilteni et al. [28], which is based on princi-
pal components analysis (PCA). This measure has recently been
shown to be useful in studies that investigated the relationship be-
tween motion complexity and embodiment [56, 55, 77]. To the
best of our knowledge, this paper represents the first application



of the d95 complexity score in the context of cybersickness. This
work explored the relationship between motion complexity and cy-
bersickness over the course of exposure. Our analyses focused on
individual discomfort scores recorded at the end of each trial rather
than the typically reported aggregate discomfort score. As a result,
this metric provides a more dynamic view of how cybersickness
evolves over the course of exposure for each participant. The re-
sults of these analyses revealed a systematic relationship between
movement complexity and discomfort score ratings from partici-
pants across both experiments. Reduced movement complexity was
observed as discomfort increased, which supports the loss of com-
plexity hypothesis and suggests that this approach may be a promis-
ing objective indicator for future cybersickness research.

2 RELATED WORKS

2.1 The Cause of Cybersickness

Despite none of the existing theories being able to fully explain the
causes of cybersickness [62, 67], there are three distinct theories
widely cited by researchers.

2.1.1 The Sensory Conflict Theory

The sensory conflict theory attributes cybersickness to a conflict be-
tween the visual and vestibular systems. Traditionally, researchers
have proposed that modeling the activity of the central nervous sys-
tem, driven by different sensory inputs, is key to understanding the
cause of motion sickness [51, 57]. The theory is based on the as-
sumption that our perceptual systems, such as the vestibular and
visual systems, work independently. Our central nervous system
therefore has certain expectations for the input of those perceptual
systems. When these expectations are violated, as when experienc-
ing virtual locomotion in VR, sickness may occur [57].

Many of those in the VR research community regard this theory
as the leading explanation for cybersickness [79, 3, 2, 47]. How-
ever, critics argue that it fails to predict motion sickness suscep-
tibility due to the difficulty in knowing an individual’s history of
environmental interactions [63, 27].

2.1.2 The Postural Instability Theory

The postural instability theory posits that cybersickness results
from prolonged exposure to unstable postural control in novel en-
vironments [58]. By taking an ecological perspective, this theory
considers the perceptual system as a whole. In VR, optically spec-
ified motion is often unrelated to the control of the body, as the
body is not physically moving [18]. This theory gained popular-
ity among cybersickness researchers seeking objective predictors
of cybersickness [21, 72, 10].

2.1.3 Other Theories

The poison theory suggests that the brain interprets the mismatch
between visual and vestibular inputs as a sign that poison has been
ingested, thus triggering sickness [68]. Despite being widely cited,
this theory lacks empirical support and is generally considered in-
valid [62]. The Differences in Virtual and Physical (DVP) hypoth-
esis proposes that differences between virtual and physical head
movements are key to understanding cybersickness [53].

2.2 Measuring Cybersickness

Traditionally, researchers have assessed the severity of cybersick-
ness a user experiences through subjective questionnaires. Mean-
while, objective measures of cybersickness are still under explo-
ration.

2.2.1 Subjective Measures
The Simulator Sickness Questionnaire is the most widely used mea-
sure for cybersickness [25]. While it only accounts for a limited
range of symptoms [19], it captures some of the key symptoms that
users experience. Furthermore, the SSQ does not provide informa-
tion about users’ discomfort levels between the start and end of a
VR session. Repeating the SSQ during exposure breaks immersion
and may lead to higher reported symptoms due to its demanding
characteristics [78, 7].

Researchers have also proposed simpler questionnaires that in-
volve only a single rating, such as the Fast Motion Sickness score
[26] and discomfort scores [16]. The FMS asks participants to rate
their level of motion sickness on a scale from 0 (no sickness at all)
to 20 (frank sickness) [26], while the discomfort score asks par-
ticipants to rate their discomfort level from 0 (how they felt at the
start) to 10 (severe discomfort) [16]. Both FMS and discomfort
scores can be administered repeatedly throughout exposure, allow-
ing researchers to capture the time course of motion sickness. Us-
ing individual discomfort scores, researchers can calculate the aver-
age discomfort score (ADS) and relative discomfort score (RDS) as
derived measures. RDS accounts for participants’ relative perfor-
mance if they terminate the session early [16] and has been widely
used [9, 48, 75].

McHugh et al. explored the use of a physical dial to measure
cybersickness and found it to be significantly positive correlation
with other questionnaire results [40]. While subjective measures are
widely used to assess cybersickness, they have several limitations
that impact their reliability. These include their dependence on the
user’s ability to judge and recall their discomfort as well as their
inability to capture real-time fluctuations in discomfort and sickness
levels.

2.2.2 Objective Measures
Motion Data. Feigl et al. studied the feasibility of using gait

parameters as cybersickness indicators [15]. While there were mul-
tiple correlations found between gait parameters and cybersickness,
there was no clear overarching explanation for these correlations.
Monteiro et al. found a correlation between the compression rate
of users’ motion trajectory data and cybersickness levels, utilizing
a complexity-based approach [43]. J. Zhao et al. used decomposed
3D motion features to estimate cybersickness, yielding better re-
sults compared to methods based on optical flow [80]. G. Zhao et
al. explored the correlation between sickness per minute and mo-
tion data [79]. To address privacy concerns associated with motion
tracking data, Moore et al. discovered that user tracking data could
be obfuscated by encoding positional data as velocity data, mitigat-
ing privacy risks while still enabling useful analysis [44].

Eye Tracking Data. Lopes et al. studied the correlation of eye
behaviors–specifically pupil position and blink rate–and cybersick-
ness [38]. However the results were inconclusive. Despite this,
many other researchers have been using eye tracking data in their
predictive models [32, 21, 64], which is described in Section 2.2.3.

Physiological Data. Dennison et al. explored using physio-
logical signals to predict cybersickness and identified electrocar-
diogram (ECG), electrogastrogram (EGG), electroencephalogram
(EEG), and heart rate as the most relevant signals [12]. Tian et al.
further investigated the connection between EGG, ECG, EEG, and
individuals’ susceptibility to cybersickness [66]. EEG is the most
widely used objective measure for cybersickness. Jeong et al. used
EEG data to classify cybersickness with deep learning algorithms
[24]. Mimnaugh et al. found that the P3b Event-Related Potential
component from EEG could reflect cybersickness symptoms and
their impact on users’ attention and task performance [42]. Cortes
et al. studied the effect of cybersickness on EEG and postural in-
stability, discovering that participants experiencing cybersickness



could maintain postural stability at the cost of increased cognitive
load, as indicated by reduced alpha power in their EEG data [10].
Li et al. explored EEG brain patterns in individuals resistant to cy-
bersickness, offering new insights into resistance mechanisms [34].

2.2.3 Predictive Models
Evaluating the Stimulus. Early work on cybersickness pre-

diction focused on assessing the discomfort-inducing properties of
stimuli. Kim et al. measured exceptional motion in 360° videos to
evaluate the level of cybersickness these videos could induce [29].
Padmanaban et al. found that vection and sickness were correlated
as a function of relative motion depth, and they developed a model
to predict the nauseogenicity of 3D videos [52]. Balasubramanian
and Soundararajan created a dataset of 100 videos and predicted
discomfort based on camera motion [5]. Du et al. extracted video
features such as optical flow and saliency, using a 3D CNN to esti-
mate sickness scores, which were calculated based on the SSQ and
MSSQ short forms [13]. However, this approach did not consider
the individual differences in cybersickness susceptibility [67].

Modeling the Relationship. Venkatakrishnan et al. used
structural equation modeling to explain the relationship between
cybersickness, motion control, and presence [69]. Wang et al. used
fuzzy logic to integrate various individual factors and found a sig-
nificant correlation between the composite value and cybersickness
severity [73]. Tian et al. proposed the Least Increase Aversion pro-
tocol to explore factors contributing to cybersickness [65].

Predicting the Discomfort. Researchers have been working
to predict cybersickness severity. Machine learning methods can be
applied here, utilizing tools like VRhook to collect labeled datasets
[74]. Some studies have used machine learning models such as
CNN-LSTM or random forests to predict cybersickness severity
based on physiological signals like heart rate and galvanic skin
conduction [23, 39]. Islam et al. applied deep fusion techniques
to integrate sensor data, achieving 88.77% classification accuracy
across four classes using eye-tracking and head-tracking data [21].
They further extended their work by fusing physiological, head-,
and eye-tracking data to forecast cybersickness severity over differ-
ent time horizons [22]. Additionally, researchers have developed
interpretable cybersickness detection models using explainable AI
[32, 31]. Li et al. proposed an EDA-enhanced kinematic model that
utilizes only HMD tracking data [35].

2.3 Motion Complexity and Cybersickness
Kilteni et al. used motion complexity to evaluate the effect of body
ownership illusions [28]. They measured motion complexity using
d95, which is based on principal component analysis (PCA). Peck
and Good found that motion complexity is significantly correlated
with embodiment [55]. They used the p95 scores to measure mo-
tion complexity, which represents the number of principal compo-
nents required to explain 95% of the variance in the data [14]. Ac-
cording to the postural instability theory, motion trajectories may be
useful to predict and measure motion sickness [58]. Most previous
studies on postural instability have measured the standard deviation
of the center of balance or head position.

Lipsitz and Goldberger proposed the loss of complexity hypoth-
esis as a framework to explain how disease and aging—both of
which impair physiological function—lead to a reduction in the
complexity of human physiological outputs. This loss of com-
plexity reflects a diminished ability to adapt to physiological stress
[36]. Empirical evidence supporting this hypothesis has been
found across various fields, including kinesiology [8], cardiovas-
cular physiology [11], and neurophysiology [17, 45]. In this work,
we apply the loss of complexity hypothesis in the context of cy-
bersickness. If a systematic reduction in the complexity of motion
can be observed when users experience discomfort during the use

Figure 1: Screenshots of the close-quarter (left) and open virtual
environments (right) used in Experiment 1, which share the same
layout and only differed in wall height. The task required participants
to collect the coins shown in both screenshots by traveling over them.

of virtual reality systems, then this would provide further empiri-
cal support for the loss of complexity hypothesis and also introduce
new opportunities for using motion complexity as an objective in-
dicator of cybersickness.

3 MOTION COMPLEXITY CALCULATION

As mentioned in Section 2.3, the loss of complexity hypothesis pre-
dicts that a reduction in motion complexity may indicate impaired
physiological functions. To test this hypothesis, we used the d95
score, a metric that has been employed by VR researchers in other
scientific contexts, to measure participants’ motion complexity.

3.1 Data Recording

The VR applications in both experiments recorded the local po-
sition (x,y,z) and rotation (yaw, pitch,roll) of the head-mounted
display (Head) relative to its parent during the VR session, cap-
turing the physical motion generated by users with six degrees
of freedom (DOF). Experiment 1 recorded data at a frequency
of 90 Hz and Experiment 2 recorded data at a frequency of 72
Hz. Additionally, the global position and rotation of the XR
camera rig (Rig) were recorded, reflecting virtual motion result-
ing from users’ controller inputs. Virtual locomotion was ac-
complished using view-directed steering, which meant that only
the x- and z-axis translation, along with yaw rotation, of the
Rig were changing. Therefore, by including tracking data from
the Rig, the motion dataset increases from 6-DOF to 9-DOF
(xhead ,yhead ,zhead ,yawhead , pitchhead ,rollhead ,xrig,zrig,yawrig).

3.2 Complexity Estimation

Our primary measure, motion complexity, was derived from the d95
head tracker scores as defined in [28]. To estimate this, we first
performed PCA on the 6-DOF motion data for each trial using the
prcomp() method in R. Results from PCA summarize the vari-
ance in each dimensionality based on eigenvalues which represents
the amount of variance that can be explained by a given principal
component. We looped through the array of each data matrix’s cu-
mulative proportion of variance (sorted in descending order) to de-
termine the least number of dimensionality needed to account for at
least 95% of the variance. For the 6-DOF dataset, we denoted this
number as d95.6d. Since virtual locomotion is also associated with
cybersickness, we appended the motion tracking data from the Rig
to the 6-DOF dataset, resulting in a 9-DOF dataset. We then cal-
culated a second motion complexity score, d95.9d, using the same
approach as for d95.6d.

4 USER STUDIES

In this paper, we report the key methodological details from the
two prior experiments that are pertinent to the motion complexity
analysis; the full explanation of the experimental procedures can be



Figure 2: A screenshot of the virtual environment used in Experi-
ment 2. The task required participants to collect the coins and arrows
shown in both screenshots by traveling over them.

found in [76] (Experiment 1) and [49] (Experiment 2). Both ex-
periments were conducted in the same laboratory, with study proto-
cols reviewed and approved by the University of Minnesota’s Insti-
tutional Review Board (IRB). Additionally, the experiments were
conducted two years apart and involved different participant pools.

4.1 Experiment 1
4.1.1 Experiment Design
Experiment 1 was originally conducted to investigate the effective-
ness of adaptive restriction, a cybersickness mitigation technique
that extended the widely used field-of-view (FOV) restrictor by
changing the size and shape based on the optical flow in the user’s
visual field.

The study followed a 2×3 mixed design with the virtual scene as
the between-subjects variable (close-quarter environment and open
environment) and FOV restriction as the within-subjects variable
(symmetric restriction, adaptive restriction, and no restriction). Par-
ticipants came to the lab for three sessions, each of which was sep-
arated by at least 24 hours. Each session lasted approximately 30
minutes total, with about 20 minutes immersed in VR. Participants
used an HTC Vive Pro Eye headset and Valve Index controllers to
experience the virtual environment.

4.1.2 Procedure
At the first session, participants read the information sheet, gave
informed consent, learned how to use the Valve Index controller
and immersed themselves in the virtual environment using an HTC
Vive Pro Eye headset. During each VR experience, participants
stood in place and were free to physically rotate their heads but
were instructed not to walk. Virtual translation and rotation were
controlled using the controller’s thumbstick, with a translation ve-
locity set at 2.5 meters per second and a rotation velocity of 45◦
per second. Participants finished a short practice trial before begin-
ning 10 consecutive experimental trials, each lasting approximately
2 minutes, for an overall immersion time of about 20 minutes. In
each trial, participants navigated along a predefined path marked
by coins. As depicted in Figure 1, the close-quarter virtual envi-
ronment featured 3-meter-high walls, while the open environment
had 0.15-meter-high walls. After completing each trial, participants
rated their discomfort on a scale of 0 to 10 using a virtual slider
within the VR interface. Participants also completed the Simulator
Sickness Questionnaire (SSQ) both before and after the VR experi-
ence.

4.1.3 Participants
A total of 38 participants (19 male, 19 female) completed all three
sessions of the study. They were recruited from the university com-
munity and ranged in age from 19 to 27 (M=22, SD=2.46).Self-
reported video game experience varied from little to over 10 years

of gaming experience. To be eligible, participants had to be at least
18 years old, able to stand without assistance, have normal or cor-
rected vision, not be pregnant, and have no history of severe motion
sickness. Participants were compensated with a $20 gift card. Due
to technical errors in the recorded data from two participants, this
analysis includes data from 36 participants (18 male, 18 female).

4.2 Experiment 2
4.2.1 Experiment Design
Experiment 2 was originally conducted to evaluate a novel cyber-
sickness reduction technique called “peripheral teleportation” (PT).
The study followed a between-subjects design with three condi-
tions: PT, black FOV restriction, and no restriction (control). Par-
ticipants visited the lab for a single session that lasted approxi-
mately 45 minutes, with about 25 minutes immersed in VR. The
experiment used a Meta Quest 2 headset with Oculus Link.

4.2.2 Procedure
When participants came to the lab for their session, they first read
the information sheet, gave informed consent, learned how to use
the Meta Touch 2 controller, and immersed themselves in the vir-
tual environment using a Meta Quest 2 headset. The required body
posture, motion constraints, and locomotion interface was the same
as Experiment 1 (see Section 4.1.2). The translation velocity was
3 meters per second while the rotation velocity was 45◦. Partici-
pants finished a short practice trial before they completed 10 con-
secutive experimental trials. Each experimental trial took about 2.5
minutes to finish, resulting in an overall immersion time of approx-
imately 25 minutes For each trial, they navigate a predefined path
marked by coins and arrows. The virtual environment was a city
about 130m× 100 m in size. At the end of each trial, they rated
their discomfort score on a scale of 0 to 10 using a virtual slider in
VR.

4.2.3 Participants
A total of 90 participants (45 male, 45 female) participated in Ex-
periment 2. Participants’ ages ranged from 19 to 27 years old (M =
23.57, SD = 2.67). Self-reported video game experience was also
varied, ranging from little to over 10 years of gaming experience.
Participants were recruited from the university community through
classroom announcements, email lists and posted flyers. In order to
be eligible, they had to be over the age of 18, able to stand without
assistance, have normal or corrected vision, not be pregnant, and
have no history of severe motion sickness. Participants were com-
pensated with either extra credit or a $15 Amazon gift card. Data
from all 90 participants was included in this analysis.

4.3 Measures
SSQ Scores. For both experiments, the Kennedy-Lane Sim-

ulator Sickness Questionnaire (SSQ) [25] was used to assess the
severity of a participant’s sickness symptoms. The SSQ was ad-
ministered twice within each session, once prior to VR exposure
in order to gain a baseline, and then again after the exposure. We
took the difference between the pre- and post- exposure responses
to calculate the total severity of symptoms.

Discomfort Scores. At the end of each trial, participants re-
ported their subjective discomfort based on a scale from 0 to 10
using a slider inside VR. If participants reported a 10, the experi-
ment would immediately terminate in addition to participants hav-
ing the option to manually terminate the experiment. In the original
analyses for these experiments, average discomfort scores (ADS)
and relative discomfort scores were computed for each condition
using the procedure from Fernandes and Feiner [16]. However, for
this new investigation of motion complexity, we did not aggregate
per-trial data into ADS and RDS, because we are interested in a
finer-grained analysis of the data across all trials.



Task Duration. The VR application recorded task duration by
the overall time spent on the navigation task, which is defined as the
time between when they started and stopped moving in each trial.

Visibility and Presence. Participants completed a post-
experiment questionnaire assessing visibility and presence using a
7-point Likert scale to rate their agreement with the following state-
ments:

• Visibility: It was difficult to see the virtual environment dur-
ing locomotion.

• Presence: I had a sense of being present in the virtual envi-
ronment.

Motion Tracking Data. Motion tracking data was recorded as
described in Section 3. In some cases where participants terminated
the experiment early, the data from that trial was excluded from the
analysis. A total of 15 trials were excluded from Experiment 1, and
9 trials were excluded from Experiment 2.

4.4 Hypotheses
Using data from each experiment, we investigated the following
hypotheses regarding the effects of motion complexity and cyber-
sickness:

• H1.A: In Experiment 1, participants would report lower dis-
comfort scores in the optical flow restrictor condition com-
pared to the control condition.

• H1.B: In Experiment 2, participants would report lower dis-
comfort scores in the peripheral teleportation condition com-
pared to the control condition.

• H2: In both experiments, higher d95.6d scores will be associ-
ated with lower discomfort ratings from participants.

• H3: In both experiments, higher d95.9d scores will be associ-
ated with lower discomfort ratings from participants.

Hypotheses H1.A and H1.B were included to confirm previously
reported effects on cybersickness reduction using the individual
discomfort scores instead of the aggregated discomfort scores that
were previously reported in prior works. Individual discomfort
scores were used in order to better monitor cybersickness effects
throughout the course of exposure because discomfort scores were
queried at multiple points in the experiments. This allows for a
finer-grained analysis of the data across all trials. H2 and H3
are completely new hypotheses to evaluate the motion complexity
measure proposed in this paper.

5 RESULTS

5.1 Discomfort Scores Distribution
We conducted a distribution analysis on the collected discomfort
scores from both Experiments 1 and 2, similar to prior research
[23]. For both Experiments 1 and 2, the quantile distributions of
discomfort scores are the same and are listed as follows. The first
quantile of the distribution was 1, the second quantile of the distri-
bution was 4, and the third quantile of the distribution was 7.

5.2 Statistical Model
We used a linear mixed-effects model (LMM) to investigate the
influence of d95.6d, d95.9d, and Mitigation conditions on partic-
ipants’ individual discomfort score ratings. The distribution of par-
ticipants’ discomfort score ratings was not normal because it was
an ordinal rating from 0 to 10. However, because it has a rela-
tively large number of levels and equal intervals, it is reasonable
to treat discomfort scores as continuous. Additionally, LMMs are
robust to assumption violations [60] and have been previously used
for evaluation when assumptions are violated [1], in particular for
discomfort scores [70].

We programmed the LMM with the lmer4 package in R [6], fol-
lowing the procedure recommended by Müller et al. [46]. First, we

used a forward stepwise linear regression to identify possible pre-
dictors of the discomfort score ratings out of the following candi-
date variables: Mitigation, d95.6d, d95.9d, presence, visibility, and
virtual environment. At each step, we chose variables based on p-
values and stopped when the AIC was equal to Mallow’s Cp to con-
trol the total number of variables in the final model. Starting with
the six factors that we have already know to predict cybersickness
[69], the forward stepwise linear regression model reduced them to
three, which were Mitigation, d95.6d, and d95.9d. For the rest of
the factors, we did not observe a significant impact. This general
regression equation is shown in Equation 1.

discomfort score ∼ mitigation + d95.6d + d95.9d+(1 | id) (1)

5.3 Experiment 1
Mitigation Technique. The analysis revealed a significant ef-

fect of mitigation technique (B = −1.73,SE = .60, t = −2.86, p =
.005), which indicate that participants’ discomfort scores were 1.73
points lower with the adaptive restrictor. These results confirm
the previously reported main effect using the linear mixed-effects
model, thus supporting the validity of analyzing discomfort scores
on a per-trial basis.

Motion Complexity. We found that both d95.6d (B =
−0.66,SE = .24, t = −2.66, p = .008) and d95.9d (B =
−0.47,SE = .12, t = −3.62, p < 001) had a significant impact on
the discomfort scores, suggesting that the requirement of one addi-
tional axis to explain the tracking data variation is associated with
a decrease of approximately .66 (d95.6d) and .47 (d95.9d) in dis-
comfort scores, respectively. These results are shown in Figure 3.

5.4 Experiment 2
Mitigation Technique. The analysis revealed a significant ef-

fect of mitigation technique (B = −2.15,SE = .54, t = −3.99, p <
.001), which indicated that participants’ discomfort scores are 2.15
points lower with PT. These results confirm the previously reported
main effect using the linear mixed-effects model, thus supporting
the validity of analyzing discomfort scores on a per-trial basis.

Motion Complexity. We found that only d95.9d (B =
−0.66,SE = .29, t = −2.25, p = .02), but not d95.6d (B =
−0.56,SE = .32, t = −1.73, p = .08), had a significant impact on
the discomfort score ratings, which suggested that one additional
axis required to explain the tracking data variation (d95.9d) is as-
sociated with a decrease of approximately .66 in discomfort scores.
These results are shown in Figure 4.

6 DISCUSSION

6.1 Motion Complexity and Cybersickness
The results revealed a systematic relationship between motion com-
plexity, measured using d95.6d and d95.9d, and user discomfort
across two virtual reality cybersickness experiments. These find-
ings support the loss of complexity hypothesis, which posits that
disease states or aging can produce a reduction of complexity in the
dynamics of many physiological systems. It is worth noting that
these results do not contradict previous evidence in support of pos-
tural instability theory. Complexity and postural sway are derived
from different motion characteristics, and less complex motion does
not necessarily mean stabilized posture. Similarly, a reduction in
motion complexity could also be consistent with sensory conflict
theory, as a physiologically effect produced by motion sickness,
rather than an underlying cause.

From a practical perspective, motion complexity represents a po-
tentially useful objective indicator for cybersickness research. Due
to its ability to be computed directly from motion tracking data
without any additional instrumentation, it can be readily applied in
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Figure 3: (Left) A line graph illustrating the impact of d95.6d (x-axis) on participants’ discomfort score ratings (y-axis) across trials in Experiment
1. Each solid line represents a linear regression line for each of the three FOV restriction conditions: no restriction, optical flow adaptive
restriction, and symmetric restriction. The shaded grey areas around the lines represent the confidence intervals for each smooth. The graph
demonstrates that lower d95.6d scores are associated with higher reported discomfort levels, particularly in the optical flow adaptive and
symmetric restriction conditions. (Right) A line graph illustrating the impact of d95.9d (x-axis) on participants’ discomfort score ratings (y-axis)
across trials in Experiment 1. The figure shows that lower d95.9d scores are correlated with higher reported discomfort levels.

a wide variety of experimental procedures, including data collected
from previous studies.

The extension of the 6-DOF motion complexity measure used in
previous work with three additional degrees of freedom from virtual
locomotion is another contribution of this paper. Since cybersick-
ness is strongly associated with continuous virtual movement that
does not align with physical motion, we expected that the 9-DOF
motion complexity measure would provide a more sensitive indi-
cator. This intuition was consistent with our results; the effect for
d95.6d was only significant in Experiment 1, while d95.9d was sig-
nificant for both experiments. Future work could also consider in-
corporating additional dimensions, such as controller motion track-
ing data. This would be valuable to evaluate whether a reduction in
movement complexity is measurable in other body parts, and could
also potentially improve its sensitivity as an objective indicator of
cybersickness.

6.2 Limitations and Future Work

This paper presents initial evidence in support of motion complex-
ity as an objective indicator of cybersickness. However, further in-
vestigation is necessary to validate its use as a measurement in-
strument. Meehan et al. [41] defined valuable measurement in-
struments as reliable (able to produce repeatable measures both
within and across subjects), valid (measures the underlying con-
struct), sensitive (ability to discriminate amongst multiple outcome
levels), and objective (well protected against bias from the subject
and the experimenter). Motion data is inherently objective, and al-
though our analyses of data from two prior experiments is promis-
ing, validation of the other three criteria is beyond the scope of this
initial inquiry. Future evaluations will need to build upon this work
to replicate and generalize these results across a wider variety of
virtual reality systems, scenarios, and users.

The results reported in this paper were derived from motion
tracking data collected using two consumer-grade VR systems. Pre-
vious studies have shown that the such systems are not immune to
error; for example, an evaluation of the SteamVR 1.0 tracking sys-
tem observed an offset in tilt between the real and virtual ground
plane when tracking is lost and reacquired [50]. The Oculus Quest

2, which was used in Experiment 2, has been reported to have supe-
rior accuracy and precision compared to the SteamVR 2.0 tracking
system used in Experiment 1 [20]. It should be noted that in both
experiments, participants were instructed to stand in place without
turning their body, and virtual movement and turns were primar-
ily accomplished using the handheld controller. This reduces the
likelihood of motion tracking errors that may occur when walk-
ing around a physical room. Therefore, evaluation of movement
complexity during physical locomotion tasks using wide-area VR
tracking systems would be valuable in future work.

Seeing as the motion complexity measure relies upon princi-
pal component analysis (PCA), future studies will need sufficiently
large sample sizes to achieve sufficient sampling adequacy. It is
generally agreed upon that approximately n = 100 is needed for a
single group model while n ≥ 150 is needed to compare between
groups. For example, Peck and Good analyzed experiments with
n = 189 and n = 99 while Experiment 2 had n = 90 [55]. How-
ever, it is possible to use a smaller number of participants as long as
there are approximately 100 sessions worth of data [71]. In this pa-
per, Experiment 1 only had n = 36, but the within-subjects design
required each participant to complete three separate VR sessions,
resulting in a total of 108 sessions across the entire experiment.
As previously noted, both experiments considered in this paper had
larger sample sizes than the majority of contemporary VR locomo-
tion studies [81], and future research may not be able to replicate
these findings in smaller-scale studies.

It should also be noted that the d95 score is not the only potential
way to quantitatively represent motion complexity. Other models,
such as multiscale entropy [11], have also been proposed in the
literature. We believe that investigating different approaches for
modeling movement complexity and comparing their utility would
be a worthwhile endeavor for future cybersickness research.

7 CONCLUSION

This paper explored the relationship between motion complexity
and cybersickness by analyzing motion tracking data from two pre-
vious cybersickness studies using the d95 complexity score. Our
results support the loss of complexity hypothesis, showing that re-
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Figure 4: (Left) A line graph illustrating the impact of d95.6d (x-axis) on participants’ discomfort score ratings (y-axis) across trials in Experiment
2. Each solid line represents a linear regression line for each of the three mitigation conditions: no restriction, FOV Restriction, and Peripheral
Teleportation (PT). The shaded grey areas around the lines represent the confidence intervals for each smooth. (Right) A line graph illustrating
the impact of d95.9d (x-axis) on participants’ discomfort score ratings (y-axis) across trials in Experiment 2. The figure shows that lower d95.9d
scores are correlated with higher reported discomfort levels. The graph demonstrates that lower d95.9d scores are significantly associated with
higher reported discomfort levels, particularly in FOV restrictor and PT conditions.

duced motion complexity is associated with increased discomfort
during the VR experience. Notably, the 9-DOF complexity mea-
sure, which includes both physical head movement and virtual cam-
era motion, was a more sensitive indicator than the 6-DOF measure
computed from physical movements alone. Motion complexity of-
fers a promising, objective indicator of cybersickness that can be
computed from VR head tracking data without requiring additional
equipment. While these initial findings are encouraging, further re-
search is needed to validate motion complexity as a reliable and sen-
sitive measure across different VR systems, virtual environments,
and user groups. By refining this approach, motion complexity
could become a valuable tool for predicting and potentially miti-
gating cybersickness.
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